Technical Reference & Application Guide

Gas Detection Equipment

When you need it right, right now, count on Kele. We make it easy.

The Kele promise . . .

SERVICE

- Customer Service specialists answer the phone promptly, never a machine
- Technical Support and Engineers with 600 hours of product training a year
- Online access to your account
- Dedicated Project Sales Teams who help you maximize your order
- Multilingual International Sales Professionals
- Warehouse professionals who get products to you the next day
- LEED® Accredited Professionals to help your project go green

SELECTION

- In-stock inventory shipped when you need it, every time
- Stock status available online at kele.com
- Products from over 300 respected suppliers, backed by Kele service and technical support
- Hundreds of products to help your project go green (kele.com/green)
- A multitude of products made in the United States of America

SOLUTIONS

- Engineering expertise
- Experienced panel shop producing over 4,000 custom panels each year. Our panel shop can also build explosionproof and intrinsically safe industrial control panels.
- Logistics solutions such as custom kitting and drop shipping
- Valve assembly with tagging, product assembly and calibrations
- 24/7 product selection, ordering and tracking via kele.com

facebook.com/KeleSolutions

@KeleSolutions

www.kele.com

USA: **800.284.5353** International: **001.901.388.1697**

888.397.5353 M-F <u>6:30AM-7:00PM CST</u>

Phone: 001.901.382.6084 E-mail: international@kele.com

Contents

2
3
4
5
6-9
10
11-12
13
14
15-17
18
19
20-21
22-23
24-25
26-27
28
29

What is Gas?

The name gas is derived from the word chaos.
Gas molecules move randomly and tend to expand indefinitely, filling any available volume. Gas molecules will mix rapidly into any atmosphere in which they are released.

There are different types of gases present in everyday life. Even the air we breathe is made up of several different gases including Nitrogen, Oxygen, and Carbon Dioxide.

Air Composition

Name	Symbol	Percent by Volume
Nitrogen	N_2	78.084%
Oxygen	O_2	20.9476%
Argon	Ar	0.934%
Carbon Dioxide	CO ₂	0.0314%
Neon	Ne	0.001818%
Methane	CH ₄	0.0002%
Helium	He	0.000524%
Krypton	Kr	0.000114%
Hydrogen	H ₂	0.00005%
Xeron	Xe	0.000087%

The table above gives the sea-level composition of air (in percent by volume at a temperature of $59^{\circ}F$ ($15^{\circ}C$) and a pressure of 101325 Pa).

Propane and Natural Gas (Methane) are used in many restaurants, commercial kitchens, and homes for heating and cooking.

Carbon Monoxide, Carbon Dioxide, and Nitrogen Oxides are produced by vehicle engines with fuel and oxygen combustion.

Gas Hazards

Some gases have a color, some have a smell, and others could have both features associated with them. For example, H_2S , Hydrogen Sulfide has an odor of rotten eggs. Alternatively, many gases cannot be seen or smelled, making them difficult to detect without the use of a monitor. Also, gases vary in weight and could be lighter, heavier, or about the same density as air. Even though you may not see it, smell it, or touch it, it doesn't mean the gases are not there.

Gas monitoring applications are typically classified into three main types:

FLAMMABLE

RISK OF FIRE

AND/OR

EXPLOSION

A flammable gas

is one that will

burn when mixed

with oxygen and

ignited.

TOXIC

RISK OF POISONING

Toxic gases pose a threat to human health and can be deadly at elevated concentrations.

ASPHYXIANT

RISK OF SUFFOCATION

Oxygen can be consumed or displaced by another gas.

Gas Hazards

FLAMMABLE

RISK OF FIRE AND/OR EXPLOSION: Methane Butane Propane

TOXIC

RISK OF POISONING: Carbon Monoxide Carbon Dioxide Chlorine

ASPHYXIANT RISK OF SUFFOCATION:

Oxygen deficiency

Flammable Hazards

Required for Combustion:

- Source of Ignition
- Oxygen
- Fuel

Fire Triangle

Combustion is a chemical reaction where oxygen is rapidly combined with a fuel (usually hydrocarbon compounds) accompanied by the evolution of light and heat. The hydrocarbon compound can be solid, liquid, vapor, or gas.

The process of combustion can be represented by the fire triangle. Three factors are always needed to cause combustion:

- 1. A source of ignition
- 2. Oxygen
- 3. Fuel in the form of a solid, liquid, vapor, or gas

Ignition Temperature

Flammable gases can be ignited at certain temperatures even without an external ignition source. The temperature for self-sustained combustion, independent of a flame or spark, is called the ignition temperature. If using a gas monitor in a hazardous area, the surface temperature must not exceed the ignition temperature of the gas. Apparatus designed for hazardous areas are marked with a T rating or a maximum surface temperature.

Flash Point (F.P. °C)

The flash point of a flammable substance is the lowest temperature at which the surface of the substance emits sufficient vapor to be ignited by a small flame.

Flash point and the ignition temperatures can be different. Do not confuse the two.

Gas / Vapor	Flash Point °C	Ignition Temp. °C
Methane	<-20	595
Kerosene	38	210
Bitumen	270	310

To convert a Celsius temperature into degrees Fahrenheit: °F = (9/5 x °C)+32

Vapor Density

Vapor density is a measure of the density of a gas or vapor relative to air

The vapor density helps to determine sensor placement. The density of a gas / vapor is compared with air when air = 1.0

If the vapor density is 4.0 the gas will rise.

If the vapor density is 1.0 the gas will fall.

Vapor density
0.55
0.97
1.19
3.0 approx

Image Courtesy of Honeywell Analytics

Flammable Limit

Each gas or vapor has a specific concentration band that will produce the combustible mixture. The upper level limit on this band is called the Upper Explosive Limit (or the UEL) and a lower level is called the Lower Explosive Limit (LEL).



Image Courtesy of Honeywell Analytics

Concentration levels below the LEL will not produce an explosion because there is insufficient gas and the mixture is considered too "lean." At levels above the UEL, the mixture has insufficient oxygen and is considered too "rich." The flammable range for each gas or mixture of gases falls between the limits of the LEL and UEL. Gas concentrations outside these limits are not capable of combustion. The Flammable Gases Data starting on page 6, indicates the limiting values for some of the better-known combustible gases and compounds. The data presents limits for gases and vapors at normal pressure and temperature conditions. An increase in atmospheric pressure or temperature will decrease the LEL of a gas or vapor.

Normal operating conditions in a typical industrial plant should have very low background levels of gas present or none at all. For this scenario, detection and early warning systems will only be required to detect levels from 0% of gas up to the lower explosive limit. Shutdown procedures and site clearance should be initiated prior to gas concentrations reaching 50% LEL to ensure an adequate safety margin is provided.

Gas concentrations in excess of the UEL can occur in enclosed or unventilated areas. Gases confined in these areas can be diluted to a hazardous level when opening doors or hatches.

Flammable Hazards

Methane

Butane

Propane

Benzene

Ethanol

Flammable Hazards

Flammable Gases Data

FLAMMABLE GASES DATA

				Flammable Limits				
		Relative Vapor	Flash	Lower Flammable Limit	Upper Flammable Limit	Lower Flammable Limit	Upper Flammable Limit	IT oc
Common Name Cresols (mixed isomers)	Formula CH3C5H4OH	Density 3.73	Point °C 81	% v/v 1.10	% v/v	mg/L 50	mg/L	1.T. °C 555
Crotonaldehyde	CH3CH=CHCHO	2.41	13	2.10	16.00	82	470	280
Cumene	C6H5CH(CH3)2	4.13	31	0.80	6.50	40	328	424
Cyclobutane	CH2(CH2)2CH2	1.93	J.	1.80	0.50	42	320	12.1
Cycloheptane	CH2(CH2)5CH2	3.39	<10	1.10	6.70	44	275	
Cyclohexane	CH2(CH2)4CH2	2.90	-18	1.20	8.30	40	290	259
Cyclohexanol	CH2(CH2)4CH0H	3.45	61	1.20	11.10	50	460	300
Cyclohexanone	CH2(CH2)4CO	3.38	43	1.00	9.40	42	386	419
Cyclohexene	CH2(CH2)3CH=CH	2.83	-17	1.20		41		244
Cyclohexylamine	CH2(CH2)4CHNH2	3.42	32	1.60	9.40	63	372	293
Cyclopentane	CH2(CH2)3CH2	2.40	-37	1.40		41		320
Cyclopentene	CH=CHCH2CH2CH	2.30	<-22	1.48	10.40	41	107	309
Cyclopropane	CH2CH2CH2	1.45	1Γ	2.40	10.40	42	183	498
Cyclopropyl methyl ketone	CH3COCHCH2CH2 CH3CH6H4CH(CH3)2	2.90 4.62	15 47	1.70 0.70	6.50	58 39	366	452 436
p-Cymene Decahydro-naphthalene trans	CH2(CH2)3CHCH(CH2)3CH2	4.62	54	0.70	4.90	40	284	288
Decany (mixed isomers)	C10H22	4.70	46	0.70	5.60	40	433	201
Dibutyl ether	(CH3(CH2)3)20	4.48	25	0.70	8.50	48	460	198
Dichlorobenzenes (isomer not	C6H4Cl 2	5.07	86	2.20	9.20	134	564	648
stated)		5.01			7.20	151	501	310
Dichlorodiethyl-silane	(C2H5)SiCl2		24	3.40	_	223		
1,1-Dichloroethane	CH3CHCI2	3.42	-10	5.60	16.00	230	660	440
1,2-Dichloroethane	CH2CICH2CI	3.42	13	6.20	16.00	255	654	438
Dichloroethylene	CICH=CHCI	3.55	-10	9.70	12.80	391	516	440
1,2-Dichloro-propane	CH3CHCICH2CI	3.90	15	3.40	14.50	160	682	557
Dicyclopentadiene	C10H12	4.55	36	0.80	10.00	43	707	455
Diethylamine	(C2H5)2NH	2.53	-23	1.70	10.00 11.70	50	306 570	312
Diethylcarbonate Diethyl ether	(CH3CH20)2C0 (CH3CH5)20	4.07 2.55	24 -45	1.40	36.00	69 60	1118	450 160
1,1-Difluoro-ethylene	CH2=CF2	2.21	-43	3.90	25.10	102	665	380
Diisobutylamine	((CH3)2CHCH2)2NH	4.45	26	0.80	3.60	42	190	256
Diisobutyl carbinol	((CH3)2CHCH2)2CHOH	4.97	75	0.70	6.10	42	370	290
Diisopentyl ether	(CH3)2CH(CH2)2O(CH2)2CH(CH3)2	5.45	44	1.27	0.10	104	3.0	185
Diisopropylamine	((CH3)2CH)2NH	3.48	-20	1.20	8.30	49	260	285
Diisopropyl ether	((CH3)2CH)20	3.52	-28	1.00	21.00	45	900	405
Dimethylamine	(CH3)2NH	1.55	-18 gas	2.80	14.40	53	272	400
Dimethoxymethane	CH2(OCH)3)2	2.60	-21	3.00	16.90	93	535	247
3-(Dimethylamino)propiononitrile	(CH3)2NHCH2CH2CN	3.38	50	1.57		62		317
Dimethyl ether	(CH3)20	1.59	-42 gas	2.70	32.00	51	610	240
N,N-Dimethylformamide	HCON(CH3)2	2.51	58	1.80	16.00	55	500	440
3,4-Dimethyl hexane	CH3CH2CH(CH3)CH(CH3)CH2CH3	3.87	2	0.80	8.50	38	310	305
N,N-Dimethyl hydrazine	(CH3)2NNH2	2.07	-18 11	2.40	20	60	490	240
1,4-Dioxane 1,3-Dioxolane	OCH2CH2OCH2CH2 OCH2CH2OCH2	3.03 2.55	-5	1.90 2.30	22.50 30.50	74 70	813 935	379 245
Dipropylamine	(CH3CH2CH2)2NH	3.48	-5 4	1.60	9.10	66	376	280
Ethane	CH3CH3	1.04	2.50	1.00	15.50	31	194	515
Ethanethiol	CH3CH2SH	2.11	<-20	2.80	18.00	73	466	295
Ethanol	CH3CH2OH	1.59	12	3.10	19.00	59	359	363
2-Ethoxyethanol	CH3CH2OCH2CH2OH	3.10	40	1.80	15.70	68	593	235
2-Ethoxyethyl acetate	CH3COOCH2CH2OCH2CH3	4.72	47	1.20	12.70	65	642	380
Ethyl acetate	CH3COOCH2CH3	3.04	-4	2.20	11.00	81	406	460
Ethyl acetoacetate	CH3COCH2COOCH2CH3	4.50	65	1.00	9.50	54	519	350
Ethyl acrylate	CH2=CHCOOCH2CH3	3.45	9	1.40	14.00	59	588	350
Ethylamine	C2H5NH2	1.50	<-20	2.68	14.00	49	260	425
Ethylbenzene	CH2CH3C6H5	3.66	23	1.00	7.80	44	340	431
Ethyl butyrate	CH3CH2CH2COOC2H5	4.00	21	1.40	25.	66	05.	435
Ethylcyclobutane	CH3CH2CHCH2CH2CH2	7.07	<-16	1.20	7.70	42	272	212
Ethylcyclohexane	CH3CH2CH(CH2)4CH2	3.87	<24	0.90	6.60	42	310	238
Ethylcyclopentane	CH3CH2CH(CH2)3CH2	3.40	<5	1.05	6.80	42	280	262
Ethylene	CH2=CH2	0.97	<u> </u>	2.30	36.00	26	423	425

FLAMMABLE GASES DATA

				Flammable Limits				
Common Name	Formula	Relative Vapor Density	Flash Point °C	Lower Flammable Limit % v/v	Upper Flammable Limit % v/v	Lower Flammable Limit mg/L	Upper Flammable Limit mg/L	I. T. °C
Ethylenediamine	NH2CH2CH2NH2	2.07	34	2.70	16.50	64	396	403
Ethylene oxide	CH2CH2O	1.52	<-18	2.60	100.00	47	1848	435
Ethyl formate	HCOOCH2CH3	2.65	-20	2.70	16.50	87	497	440
Ethyl isobutyrate	(CH3)2CHCOOC2H5	4.00	10	1.60		75		438
Ethyl methacrylate	CH2=CCH3COOCH2CH3	3.90	(20)	1.50		70		
Ethyl methyl ether	CH3OCH2CH3	2.10		2.00	10.10	50	255	190
Ethyl nitrite	CH3CH2ONO	2.60	-35	3.00	50.00	94	1555	95
Formaldehyde	НСНО	1.03		7.00	73.00	88	920	424
Formic acid	НСООН	1.60	42	10.00	57.00	190	1049	520
2-Furaldehyde	OCH=CHCH=CHCHO	3.30	60	2.10	19.30	85	768	316
Furan	CH=CHCH=CHO	2.30	<-20	2.30	14.30	66	408	390
Furfuryl alcohol	OC(CH2OH)CHCHCH	3.38	61	1.80	16.30	70	670	370
1,2,3-Trimethyl-benzene	CHCHCHC(CH3)C(CH3)C(CH3)	4.15	51	0.80	7.00			470
Heptane (mixed isomers)	C7H16	3.46	-4	1.10	6.70	46	281	215
Hexane (mixed isomers)	CH3(CH2)4CH3	2.97	-21	1.00	8.40	35	290	233
1-Hexanol	C6H13OH	3.50	63	1.20		51	_, ,	293
Hexan-2-one	CH3CO(CH2)3CH3	3.46	23	1.20	8.00	50	336	533
Hydrogen	H2	0.07		4.00	77.00	3,4	63	560
Hydrogen cyanide	HCN	0.90	<-20	5.40	46.00	60	520	538
Hydrogen sulfide	H2S	1.19	1 20	4.00	45.50	57	650	270
4-Hydroxy-4-methyl-penta-2-one	CH3COCH2C(CH3)2OH	4.00	58	1.80	6.90	88	336	680
Kerosene	CHOCOCHZC(CHO)ZOH	4.00	38	0.70	5.0	00	330	210
1,3,5-Trimethylbenzene	CHC(CH3)CHC(CH3)CHC(CH3)	4.15	44	0.70	7.30	40	365	499
, ,	CH2CCH3COCI	3.60	17	2.50	7.50	108	303	510
Methacryloyl chloride	CH4	0.55	1/	4.40	17.00	29	113	537
Methane (firedamp)			11					386
Methanol	CH3OH	1.11	11	5.50	38.00	73	484	
Methanethiol	CH3SH	1.60	70	4.10	21.00	80	420	340
2-Methoxyethanol	CH3OCH2CH2OH	2.63	39	2.40	20.60	76	650	285
Methyl acetate	CH3COOCH3	2.56	-10	3.20	16.00	99	475	502
Methyl acetoacetate	CH3COOCH2COCH3	4.00	62	1.30	14.20	62	685	280
Methyl acrylate	CH2=CHCOOCH3	3.00	-3	2.40	25.00	85	903	415
Methylamine	CH3NH2	1.00	-18 gas	4.20	20.70	55	270	430
2-Methylbutane	(CH3)2C HCH2CH3	2.50	<-51	1.30	8.00	38	242	420
2-Methylbutan-2-ol	CH3CH2C(OH)(CH3)2	3.03	16	1.40	10.20	50	374	392
3-Methylbutan-1-ol	(CH3)2CH(CH2)2OH	3.03	42	1.30	10.50	47	385	339
2-Methylbut-2-ene	(CH3)2C=CHCH3	2.40	-53	1.30	6.60	37	189	290
Methyl chloro-formate	CH300CC	3.30	10	7.50	26	293	1 020	475
Methylcyclohexane	CH3CH(CH2)4CH2	3.38	-4	1.16	6.70	47	275	258
Methylcyclo-pentadienes	C6H6	2.76	<-18	1.30	7.60	43	249	432
(isomer not stated)								
Methylcyclopentane	CH3CH(CH2)3CH2	2.90	<-10	1.00	8.40	35	296	258
Methylenecyclo-butane	C(=CH2)CH2CH2CH2	2.35	<0	1.25	8.60	35	239	352
2-Methyl-1-buten-3-yne	HC=CC(CH3)CH2	2.28	-54	1.40		38		272
Methyl formate	HCOOCH3	2.07	-20	5.00	23.00	125	580	450
2-Methylfuran	OC(CH3)CHCHCH	2.83	<-16	1.40	9.70	47	325	318
Methylisocyanate	CH3NCO	1.98	-7	5.30	26.00	123	605	517
Methyl methacrylate	CH3=CCH3COOCH3	3.45	10	1.70	12.50	71	520	430
4-Methylpentan-2-ol	(CH3)2CHCH2CHOHCH3	3.50	37	1.14	5.50	47	235	334
4-Methylpentan-2-one	(CH3)2CHCH2COCH3	3.45	16	1.20	8.00	50	336	475
2-Methylpent-2-enal	CH3CH2CHC(CH3)COH	3.78	30	1.46		58		206
4-Methylpent-3-en-2-one	(CH3)2(CCHCOCH)3	3.78	24	1.60	7.20	64	289	306
2-Methylpropan-1-ol	(CH3)2CHCH2OH	2.55	28	1.70	9.80	52	305	408
2-Methylprop-1-ene	(CH3)2C=CH2	1.93	gas	1.60	10	37	235	483
2-Methylpyridine	NCH(CH3)CHCHCHCH	3.21	27	1.20		45		533
3-Methylpyridine	NCHCH(CH3)CHCHCH	3.21	43	1.40	8.10	53	308	537
4-Methylpyridine	NCHCHCH(CH3)CHCH	3.21	43	1.10	7.80	42	296	534
α-Methyl styrene	C6H5C(CH3)=CH2	4.08	40	0.90	6.60	44	330	445
Methyl tert-pentyl ether	(CH3)2C(OCH3)CH2CH3	3.50	<-14	1.50	2.00	62	-50	345
2-Methylthiophene	SC(CH3)CHCHCH	3.40	-1	1.30	6.50	52	261	433
Morpholine	OCH2CH2NHCH2CH2	3.00	31	1.80	15.20	65	550	230
r to t prioritic	OCHECHEMICIECIE	J.UU	اد	1.00	13.20	0.0	550	۲,30

Flammable Hazards

Flammable Gases Data

Flammable Hazards

Flammable Gases Data

FLAMMABLE GASES DATA

					Flammab	le Limits			
				Lower	Upper	Lower	Upper		
		Relative		Flammable	Flammable	Flammable	Flammable		
c 11		Vapor	Flash	Limit	Limit	Limit	Limit	IT oc	
Common Name	Formula	Density	Point °C	% v/v	% v/v	mg/L	mg/L	I.I.°C	
Ethylenediamine	NH2CH2CH2NH2	2.07	34	2.70	16.50	64	396	403	
Ethylene oxide	CH2CH2O	1.52	<-18	2.60	100.00	47 87	1848	435	
Ethyl formate	HCOOCH2CH3	2.65	-20		16.50		497	440	
Ethyl isobutyrate	(CH3)2CHCOOC2H5	4.00	10	1.60 1.50		75 70		438	
Ethyl methacrylate	CH2=CCH3COOCH2CH3 CH3OCH2CH3	3.90	(20)		10.10	50	255	190	
Ethyl methyl ether Ethyl nitrite	CH3CH2ONO	2.10 2.60	-35	2.00 3.00	50.00	94	1555	95	
Formaldehyde	НСНО	1.03	-33	7.00	73.00	88	920	424	
Formic acid	HCOOH	1.60	42	10.00	57.00	190	1 049	520	
2-Furaldehyde	OCH=CHCH=CHCHO	3.30	60	2.10	19.30	85	768	316	
Furan	CH=CHCH=CHO	2.30	<-20	2.30	14.30	66	408	390	
Furfuryl alcohol	OC(CH2OH)CHCHCH	3.38	61	1.80	16.30	70	670	370	
1,2,3-Trimethyl-benzene	CHCHCHC(CH3)C(CH3)C(CH3)	4.15	51	0.80	7.00	70	0/0	470	
·	. , , , , ,								
Heptane (mixed isomers)	C7H16	3.46	-4	1.10	6.70	46	281	215	
Hexane (mixed isomers)	CH3(CH2)4CH3	2.97	-21	1.00	8.40	35	290	233	
1-Hexanol	C6H13OH	3.50	63	1.20	0.00	51	77/	293	
Hexan-2-one	CH3CO(CH2)3CH3	3.46	23	1.20	8.00	50	336	533	
Hydrogen	H2	0.07	20	4.00	77.00	3,4	63	560	
Hydrogen cyanide	HCN	0.90	<-20	5.40	46.00	60	520	538	
Hydrogen sulfide	H2S	1.19		4.00	45.50	57	650	270	
4-Hydroxy-4-methyl-penta-2-one	CH3COCH2C(CH3)20H	4.00	58	1.80	6.90	88	336	680	
Kerosene	CHCCHTACHCCHTACHCCHTA	415	38	0.70	5.0	40	7/5	210	
1,3,5-Trimethylbenzene	CHC(CH3)CHC(CH3)CHC(CH3)	4.15	44	0.80	7.30	40	365	499	
Methacryloyl chloride	CH2CCH3COCI	3.60	17	2.50		108		510	
Methane (firedamp)	CH4	0.55		4.40	17.00	29	113	537	
Methanol	CH3OH	1.11	11	5.50	38.00	73	484	386	
Methanethiol	CH3SH	1.60		4.10	21.00	80	420	340	
2-Methoxyethanol	CH3OCH2CH2OH	2.63	39	2.40	20.60	76	650	285	
Methyl acetate	CH3COOCH3	2.56	-10	3.20	16.00	99	475	502	
Methyl acetoacetate	CH3COOCH2COCH3	4.00	62	1.30	14.20	62	685	280	
Methyl acrylate	CH2=CHCOOCH3	3.00	-3	2.40	25.00	85	903	415	
Methylamine	CH3NH2	1.00	-18 gas	4.20	20.70	55	270	430	
2-Methylbutane	(CH3)2C HCH2CH3	2.50	<-51	1.30	8.00	38	242	420	
2-Methylbutan-2-ol	CH3CH2C(OH)(CH3)2	3.03	16	1.40	10.20	50	374	392	
3-Methylbutan-1-ol	(CH3)2CH(CH2)2OH	3.03	42	1.30	10.50	47	385	339	
2-Methylbut-2-ene	(CH3)2C=CHCH3	2.40	-53	1.30	6.60	37	189	290	
Methyl chloro-formate	CH300CC	3.30	10	7.50	26	293	1 020	475	
Methylcyclohexane	CH3CH(CH2)4CH2	3.38	-4	1.16	6.70	47	275	258	
Methylcyclo-pentadienes (isomer not stated)	C6H6	2.76	<-18	1.30	7.60	43	249	432	
,	CHTCH/CHD\TCHD	2.00	. 10	100	0.40	75	207	250	
Methylcyclopentane	CH3CH(CH2)3CH2	2.90	<-10	1.00	8.40	35 75	296	258	
Methylenecyclo-butane	C(=CH2)CH2CH2CH2	2.35	<()	1.25	8.60	35	239	352	
2-Methyl-1-buten-3-yne	HC=CC(CH3)CH2	2.28	-54 20	1.40	27.00	38	F00	272	
Methyl formate	HCOOCH3	2.07	- <u>20</u>	5.00	23.00	125	580 72F	450	
2-Methylfuran	OC(CH3)CHCHCH CH3NCO	2.83 1.98	<-16 -7	1.40 5.30	9.70 26.00	47 123	325 605	318 517	
Methylisocyanate	CH3=CCH3COOCH3	3.45	10	1.70	12.50	71	520	430	
Methyl methacrylate	(CH3)2CHCH2CHOHCH3	3.50	37	1.70	5.50	47	235	334	
4-Methylpentan-2-ol			16			50		475	
4-Methylpentan-2-one 2-Methylpent-2-enal	(CH3)2CHCH2COCH3 CH3CH2CHC(CH3)COH	3.45 3.78	30	1.20 1.46	8.00	58	336	206	
4-Methylpent-3-en-2-one	(CH3)2(CCHCOCH)3	3.78	24	1.40	7.20	64	289	306	
2-Methylpropan-1-ol	(CH3)2CHCH2OH	2.55	28	1.70	9.80	52	305	408	
				1	9.80		235		
2-Methylprop-1-ene 2-Methylpyridine	(CH3)2C=CH2 NCH(CH3)CHCHCHCH	1.93 3.21	gas 27	1.60 1.20	10	37 45	200	483 533	
3-Methylpyridine	NCHCH(CH3)CHCHCH	3.21	43	1.40	8.10	53	308	537	
4-Methylpyridine	NCHCHCHCH3)CHCHCH	3.21	43	1.40	7.80	42	296	534	
α-Methyl styrene	C6H5C(CH3)=CH2	4.08	40	0.90	6.60	44	330	445	
Methyl tert-pentyl ether	(CH3)2C(OCH3)CH2CH3	3.50	40 <-14	1.50	0.00	62	J30	345	
		3.40	-14	1.30	6.50	52	261	433	
2-Methylthiophene	SC(CH3)CHCHCH			-					
Morpholine	OCH2CH2NHCH2CH2	3.00	31	1.80	15.20	65	550	230	

FLAMMABLE GASES DATA

		Relative Vapor	Flash	Lower Flammable Limit	Flammab Upper Flammable Limit	Lower Flammable Limit	Upper Flammable Limit	
Common Name	Formula	Density	Point °C	% v/v	% v/v	mg/L	mg/L	I.T.°C
Naphtha	Crava.	2.50	<-18	0.90	6.00			290
Naphthalene	C10H8	4.42	77	0.90	5.90	48	317	528
Nitrobenzene Nitroethane	CH3CH2N02 C2H5N02	4.25 2.58	88 27	1.70 3.40	40.00	87 107	2 067	480
Nitromethane	CH3NO2	2.11	36	7.30	63.00	187	1 613	410
1-Nitropropane	CH3CH2CH2NO2	3.10	36	2.20	03.00	82	1013	420
Nonane	CH3(CH2)7CH2	4.43	30	0.70	5.60	37	301	205
Octane	CH3(CH2)3CH3	3.93	13	0.80	6.50	38	311	206
1-Octanol	CH3(CH2)6CH2OH	4.50	81	0.90	7.40	49	385	270
Penta-1,3-diene	CH2=CH-CH=CH-CH3	2.34	<-31	1.20	9.40	35	261	361
Pentanes (mixed isomers)	C5H12	2.48	-40	1.40	7.80	42	236	258
Pentane-2,4-dione	CH3COCH2COCH3	3.50	34	1.70		71		340
Pentan-1-ol	CH3(CH2)3CH2OH	3.03	38	1.06	10.50	38	385	298
Pentan-3-one	(CH3CH2)2CO	3.00	12	1.60	710	58	707	445
Pentyl acetate Petroleum	CH3C00-(CH2)4-CH3	4.48 2.8	25 <-20	1.00	7.10 8.0	55	387	360 560
Petroleum Phenol	C6H5OH	3.24	75	1.20	9.50	50	370	595
Propane	CH3CH2CH3	1.56	-104 gas	1.70	10.90	31	200	470
Propanel-1-ol	CH3CH2CH2OH	2.07	-104 gas	7.70	17.50	55	353	405
Propan-2-ol	(CH3)2CH0H	2.07	12	2.00	12.70	50	320	425
Propene	CH2=CHCH3	1.50		2.00	11.00	35	194	455
Propionic acid	CH3CH2COOH	2.55	52	2.10	12.00	64	370	435
Propionic aldehyde	C2H5CHO	2.00	<-26	2.00		47		188
Propyl acetate	CH3COOCH2CH2CH3	3.60	10	1.70	8.00	70	343	430
Isopropyl acetate	CH3C00CH(CH3)2	3.51	4	1.80	8.10	75	340	467
Propylamine	CH3(CH2)2NH2	2.04	-37	2.00	10.40	49	258	318
Isopropylamine	(CH3)2CHNH2	2.03	<- <u>24</u>	2.30	8.60	55	208	340
Isopropylchloro-acetate	CICH2COOCH(CH3)2	4.71 5.31	42	1.60		89		426
2-Isopropyl-5-methylhex-2-enal Isopropyl nitrate	(CH3)2CH-C(CH0)CHCH2CH(CH3)2 (CH3)2CH0N02	5.51	41 11	3.05 2.00	100.00	192 75	3 738	188 175
Propyne Propyne	CH3C=CH	1.38	II	1.70	16.80	28	280	1/3
Prop-2-yn-1-ol	HC=CCH2OH	1.89	33	2.40	10.00	55	200	346
Pyridine	C5H5N	2.73	17	1.70	12.00	58	398	550
Styrene	C6H5CH=CH2	3.60	30	1.10	8.00	48	350	490
Tetrafluoroethylene	CF2=CF2	10.00			59.00	420	2 245	255
2,2,3,3-Tetrafluoro-propylacrylate	CH2=CHCOOCH2CF2CF2H	6.41	45	2.40		182		357
2,2,3,3-Tetrafluoro-propyl methacrylate	CH2=C(CH2)COOCH2CF2CF2H	6.90	46	1.90		155		389
Tetrahydrofuran	CH2(CH2)2CH20	2.49	-20	1.50	12.40	46	370	224
Tetrahydrofurfuryl alcohol	OCH2CH2CH2CHCH2OH	3.52	70	1.50	9.70	64	416	280
Tetrahydro-thiophene N,N,N', N'-Tetra-methylmethane-	CH2(CH2)2CH2S (CH3)2NCH2N(CH3)2	3.04 3.50	13 <-13	1.10 1.61	12.30	42 67	450	200 180
diamine	, , , ,							
Thiophene	CH=CHCH=CHS	2.90	-9	1.50	12.50	50	420	395
Toluene	C6H5CH3	3.20	4	1.10	7.60	42 F1	300	535
Triethylamine	(CH3CH2)3N	3.50	-7	1.20	8.00	51 274	339 605	71.4
1,1,1-Trifluoro-ethane 2,2,2-Trifluoro-ethanol	CF3CH3 CF3CH2OH	2.90 3.45	30	6.80 8.40	17.60 28.80	234 350	605 1195	714 463
Trifluoroethylene	CF2=CFH	2.83	JU	15.30	27.00	502	904	319
3,3,3-Trifluoro-prop-1-ene	CF3CH=CH2	3.31		4.70	21.00	184	707	490
Trimethylamine	(CH3)3N	2.04		2.00	12.00	50	297	190
2,2,4-Trimethyl-pentane	(CH3)2CHCH2C(CH3)3	3.90	-12	1.00	6.00	47	284	411
2,4,6-Trimethyl-1,3,5-trioxane	OCH(CH3)OCH(CH3)OCH(CH3)	4.56	27	1.30		72		235
1,3,5-Trioxane	OCH2OCH2OCH2	3.11	45	3.20	29.00	121	1 096	410
Turpentine	149		35	0.80				254
Isovaleraldehyde	(CH3)2CHCH2CH0	2.97	-12	1.70		60		207
Vinyl acetate	CH3COOCH=CH2	3.00	-8	2.60	13.40	93	478	425
Vinyl cyclohexenes (isomer not stated)	CH2CHC6H9	3.72	15	0.80		35		257
Vinylidene chloride	CH2=CCI2	3.40	-18	7.30	16.00	294	645	440
2-Vinylpyridine	NC(CH2=CH)CHCHCHCH	3.62	35	1.20		51		482
4-Vinylpyridine	NCHCHC(CH2=CH)CHCH	3.62	43	1.10	7.0	47	776	501
Xylenes	C6H4(CH3)2	3.66	30	1.00	7.60	44	335	464

Flammable Hazards

Flammable Gases Data

Toxic Gas Hazards

Carbon Monoxide

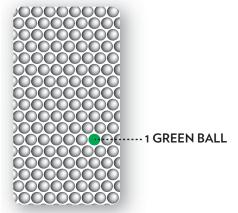
Ammonia

Hydrogen Sulfide

Chlorine

Nitrogen Dioxide

Toxic Gas Hazards


Some gases are poisonous and can cause illness or even death at very low concentrations. Carbon Monoxide can be fatal at low concentrations if exposed for a long period of time. Some gases are both combustible and toxic such as Ammonia and Hydrogen Sulfide (H,S).

Toxic gases may have strong smells like Ammonia or the distinctive "rotten eggs" smell of Hydrogen Sulfide (H_2S).

Toxic gas concentrations are usually measured by parts per million (ppm) or parts per billion (ppb).

If a room were filled with 1 million balls and one ball were green, the green ball would represent 1 ppm.

1 MILLION BALLS

100% VOL = 1,000,000 ppm 1% VOL = 10,000 ppm

EXAMPLE

100% LEL Ammonia = 15% VOL 50% LEL Ammonia = 7.5% VOL 50% LEL Ammonia = 75,000 ppm

Image Courtesy of Honeywell Analytics

The main concern with toxic gases and vapors is the effect on the health and safety of employees, the possible contamination of manufactured end-products, and the subsequent disruption of normal working activities. Toxic substances in the workplace include both organic and inorganic compounds. Cleaning agents, pesticides, paint, carpeting, upholstery, and adhesives may emit volatile organic compounds (VOCs), including formaldehyde, into the workplace. The toxic hazards may be inhaled, ingested, or absorbed through the skin. Research indicates some VOCs can cause chronic and acute health effects at high concentrations. Low to moderate levels may cause acute reactions.

It is important to measure the concentration as well as the total time of exposure, since adverse effects can often result from long-term exposure. Some substances can interact and produce a greater negative effect when combined than individually.

Toxic Exposure Limits

Toxic gases can create an immediate and/or long-term risk to personnel and the environment. Gaseous toxic substances are dangerous because they are often invisible and/or odorless. People may be exposed to toxic substances by inhalation, absorbed through the skin, or swallowed.

AICGH	AHZO	NIOSH	EH40	Meaning
Threshold Limit Values (TLVs)	Permissible Exposure Limits (PELs)	Recommended Exposure Levels (RELs)	Workplace Exposure Limits (WELs)	Limit definition
TLV-TWA	TWA	TWA	TW A	Long term exposure limit (8hr-TWA reference period)
TLV-STEL	STEL	STEL	STEL	Short term exposure limit (15-minute exposure period)
TLV-C	Ceiling	Ceiling	-	The concentration that should not be exceeded during any part of the working exposure
Excursion Limit	Excursion Limit	-	_	Limit if no STEL stated
_	BEIs	BEIs	_	Biological Exposure Indices

Image Courtesy of Honeywell Analytics

Occupational exposure limits have been defined for levels at which there is no indication of risk to the health of workers and employees exposed by inhalation day after day. The limits protect workers from health effects, but do not address safety issues such as explosive risk. In the USA there are three main organizations contributing to the development of occupational exposure limits, which include The American Conference of Governmental Industrial Hygienists (ACGIH), The Occupational Safety and Health Administration (OSHA), and The National Institute for Occupational Safety and Health (NIOSH).

The ACGIH publishes Threshold Limit Values (TLVs) as exposure guidelines. These guidelines are not legally enforceable, but are updated regularly and represent good professional practice. The list of TLVs includes more than 700 chemical substances and physical agents.

The ACGIH defines different TLV-Types as:

Threshold Limit Value - Time-Weighted Average (TLV-TWA):

The time-weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.

Threshold Limit Value – Short-Term Exposure Limit (TLV-STEL):

Defined as a 15 minute time-weighted average exposure which should not be exceeded at any time during a work day even if the 8 hour TWA is within the TLV. The Short Term Exposure Limit (STEL) should not be repeated more than 4 times a day and there should be 60 minutes between successive exposures at the STEL concentration.

Threshold Limit Value - Ceiling (TLV-C):

The concentration that should not be exceeded during any part of the working exposure.

Toxic Gas Hazards

Threshold Limit Values (TLV):

Time-Weighted Average (TLV-TWA)

Short-Term Exposure Limit (TLV-STEL)

Ceiling (TLV-C)

Toxic Hazards

Exposure Limits

Toxic Exposure Limits

The Occupational Safety and Health Administration (OSHA) of the U.S. Department of Labor defines regulatory limits and publishes Permissible Exposure Limits (PEL). PELs are enforceable regulatory limits on the amount or concentration of a substance in the air.

The National Institute for Occupational Safety and Health (NIOSH) recommends exposure levels that protect workers but are not legally enforced. NIOSH also recommends Biological Exposure Indices (BEI).

The table below illustrates the effects of concentration levels and exposure time for Carbon Monoxide (CO). CO is the most abundant toxic gas and is colorless and ordorless.

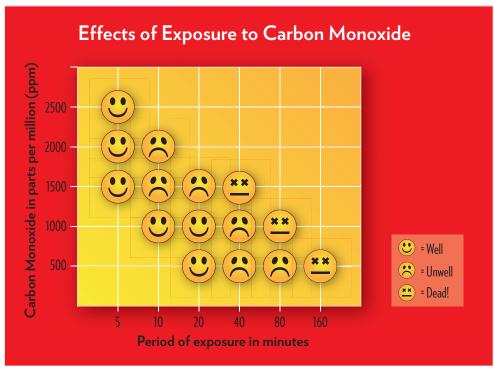


Image Courtesy of Honeywell Analytics

Toxic Gas Data

		EH4	O Workplace E	xposure Limit ((WEL)	OSHA Pern Exposure Lim		ACGIH Threshold Limit Value (TLV)
			exposure limit erence period)	(15-minute	exposure limit e reference iod)	Long-term exp (8-hour TWA	reference	8-hour TWA workday and a 40-hour workweek
Common Name	Formula	ppm	mq.m-3	ppm	mq.m-3	ppm	mg.m-3	ppm
Ammonia	NH3	25	18	35	25	50	35	25
Arsine	AsH3	0.05	0.16		0.05	0.2	0.05	
Boron Trichloride	BCI3							
Boron Trifluoride	BF3					1 (ceiling)	3 (ceiling)	1 (ceiling)
Bromine	Br2	0.1	0.66	0.3	2	0.1	0.7	0.1
Carbon Monoxide	CO	30	35	200	232	50	55	25
Chlorine	CI2	0.5	1.5	1	2.9	1 (ceiling)	3 (ceiling)	0.5
Chlorine Dioxide	C102	0.1	0.28	0.3	0.84	0.1	0.3	0.1
1,4 Cyclohexane diisocyanate	Dalli							
Diborane	B2H6					0.1	0.1	0.1
Dichlorosilane	H2Cl2Si	2	7.0	,	- 11	10	10	r
Dimethyl Amine (DMA) Dimethyl Hydrazine	C2H7N C2H8N2	2	3.8	6	11	10	18	5 0.01
Disilane	Si2H6							0.01
Ethylene Oxide	C2H4O	5	9.2			1		1
Fluorine	F2	1	7.L	1		0.1	0.2	1
Germane	GeH4	0.2	0.62	0.6	1.9	U.I	U.L	0.2
Hexamethylene Diisocyanate	C8H12N2O2	U.L	U.UL	0.0	1.7			0.005
Hydrazine	N2H4	0.02	0.03	0.1	0.13	1	13	0.003
Hydrogen	H2			3.1	55			Asphyxiant
Hydrogen Bromide	HBr			3	10	3	10	2 (ceiling)
Hydrogen Chloride	HCI	1	2	5	8	5 (ceiling)	7 (ceiling)	2 (ceiling)
Hydrogen Cyanide	HCN			10	11	10	11	4.7 (ceiling)
Hydrogen Fluoride	HF	1.8	1.5	3	2.5	3	3 (ceiling)	
Hydrogen lodide	HI							
Hydrogen Peroxide	H202	1	1.4	2	2.8	1	1.4	1
Hydrogen Selenide	H2Se					0.05	0.2	0.05
Hydrogen Sulfide	H2S	5	7	10	14	20 (ceiling)		10
Hydrogenated Methylene Bisphenyl Isocyanate (HMDI)								
Isocyanatoethylmethacrylate (IEM)								
Isophorone Diisocyanate (IPDI)	C12H18N2O2							0.005
Methyl Fluoride (R41)	CH3F							0.005
Methylene Bisphenyl Isocyanate	C15H10N2O2							0.005
Methylene Bisphenyl Isocyanate (MDI-2)	C15H10N2O2	0.01	0.00					0.005
Methylene Dianiline (MDA)	C13H14N2 CH6N2	0.01	0.08					0.1
Monomethyl Hydrazine (MMH) Naphthalene Diisocvanate (NDI)								0.005
Nitric Acid	C12H6N2O2 HNO3	2	5.2	4	10	2	5	2
Nitric Oxide	NO	L	J.Z	7	10	25	30	25
Nitrogen Dioxide	NO2					5 (ceiling)	9 (ceiling)	3
Nitrogen Trifluoride	NF3					10	29	10
n-Butyl Amine (N-BA)	C4H11N					5 (ceiling)	15	5 (ceiling)
			<u></u>	<u></u>		J (ceiling)	(ceiling)	5 (centry)
Ozone	03			0.2	0.4	0.1	0.2	100 ppb
Phosgene	COCI2	0.02	0.08	0.06	0.25	0.1	0.4	100 ppb
Phosphine	PH3			0.3	0.42	0.3	0.4	300 ppb
Propylene Oxide	C3H60	5	12			100	240	2
p-Phenylene Diamine (PPD)	C6H8N2		0.1				0.1	0.1 mg/mm3
p-Phenylene Diisocyanate (PPDI)	C8H4N2O2	0.5	0.17		1.7			_
Silane	SiH4	0.5	0.67	1	1.3	0.1	۸۲	5
Stibine	SbH3					0.1	0.5	0.1
Sulfur Dioxide	S02					5	13	0.05
Sulfuric Acid Toutions Butul Arcino (TRA)	H2SO4						1	
Tertiary Butyl Arsine (TBA)	C4H11P							0.01mg/m3 for arsenic
Tertiary Butyl Phosphine (TBP) Tetraethylorthosilicate (TEOS)	C8H2004Si							
Tetrakis (Dimethylamino) Titanium (TDMAT)	C8H24N4Ti							5 as DMA
Tetramethylxylene Diisocyanate (TMXDI)	C14H16N2O2							אויוע גם ע.
, , , , ,				150	574			lowest feasible (NIOSH)
Toluene Diamine (TDA)		50	191	150				
Toluene Diamine (TDA) Toluene Diisocvanate (TDI)	C7H10N2	50	191	150 0.02 (ceiling)				` '
Toluene Diisocyanate (TDI)		50	191	0.02 (ceiling) 4	0.14 (ceiling) 17			0.005
Toluene Diisocyanate (TDI) Triethyl Amine (TEA)	C7H10N2 C9H6N2O2 C6H15N			0.02 (ceiling)	0.14 (ceiling)			0.005
Toluene Diisocyanate (TDI)	C7H10N2 C9H6N2O2			0.02 (ceiling)	0.14 (ceiling)			0.005

Toxic Hazards

Toxic Gas Data

Asphyxiant Hazards

Oxygen depletion can be caused by:

- Displacement
- Combustion
- Oxidation
- Chemical reaction

Oxygen Depletion

People normally breathe air that is 20.9% VOL Oxygen (O_2) under normal atmospheric conditions. When the concentration of Oxygen decreases below 19.5% VOL, the air is considered oxygen deficient, and Oxygen concentrations below 16% VOL are considered unsafe for humans. Oxygen deficiency can cause impaired judgement and increased respiration leading to fainting, unconsciousness, and even death.

Air Composition

Name	Symbol	Percent by Volume
Nitrogen	N_2	78.084%
Oxygen	O_2	20.9476%
Argon	Ar	0.934%
Carbon Dioxide	CO ₂	0.0314%
Neon	Ne	0.001818%
Methane	CH₄	0.0002%
Helium	He	0.000524%
Krypton	Kr	0.000114%
Hydrogen	H ₂	0.00005%
Xeron	Xe	0.0000087%

A variety of causes can lead to Oxygen deficiency such as leaking materials from storage tanks or natural gas lines. Leaks that develop in purging or processing with an inert gas such as Helium, Argon, or Nitrogen, can result in Oxygen depletion. Decomposing organic matter produces Methane, Carbon Monoxide, Carbon Dioxide, and Hydrogen Sulfide that consume or displace Oxygen. Rust and other forms of oxidation also consume Oxygen.

Охудеп Enrichment

Oxygen enrichment can also increase risk and cause adverse effects to human health. There is an increased risk of fire and explosion in applications where O_2 concentrations are elevated. Clothing can spontaneously combust at O_2 levels of 24%. Oxygen enriched atmospheres such as welding areas, glass and ceramic manufacturing, oxygen generation facilities, medical air, chemical processes, and clean water treatment facilities must constantly monitor the environment and sensors must be certified for use in O_2 enriched atmospheres.

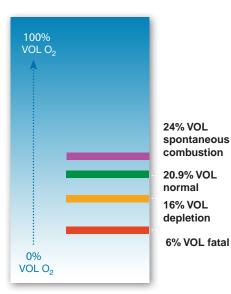


Image Courtesy of Honeywell Analytics

Applications

Toxic, combustible, and Oxygen monitoring is becoming more popular across many industries due to a strong focus on employee safety and governmental regulations. Monitors provide early leak detection which can save lives and reduce operating costs. The use and manufacture of dangerous substances in industrial processes is increasing and accidental gas leaks create a potential hazard to the industrial plant, its employees, and people living nearby.

Parking Garages

Parking garages and car tunnels need to be monitored for toxic gases from exhaust fumes. Modern garages and tunnels use this monitoring to control the ventilation fans. Tunnels may also need to be monitored for the buildup of natural gas.

Typical Applications:

- Car tunnels
- Underground and enclosed garages
- Access tunnels
- Ventilation control

Typical Gases:

Flammable: Methane (natural gas), LPG, LNG, Petroleum Vapor

Toxic: Carbon Monoxide, Nitrogen Dioxide

Boiler Rooms

The configuration and size of the boiler room depends on the size of the building. Small buildings may have a single boiler, whereas larger buildings may have several boilers.

Typical Applications:

- Flammable gas leaks from the incoming gas main
- Leaks from the boiler and surrounding gas piping
- Carbon Monoxide from badly maintained boilers

Typical Gases:

Flammable: Methane

Toxic: Carbon Monoxide, NOx

Mechanical Rooms

The refrigerants used in mechanical rooms are potentially dangerous if leaks occur.

Typical Applications:

- Leaks from refrigeration systems
- Leaks from chillers

Typical Gases:

Toxic: R-11, 12, 22, 123, 125, 134a, 222,

245, 404a, 407c, 410a, 507a, 508b, R717 (Ammonia)

Gas Monitoring Applications

The use of early warning devices, such as gas detectors, are a key part of the safety plan for reducing the risks to personnel and facilities. Early detection provides more time to take remedial or protective action. Gas detectors can be used as part of a total integrated monitoring and safety system for an office, industrial plant, and manufacturing facilities.

Gas Monitoring Applications

- Hospitals
- WastewaterTreatment Plants
- Oil and Gas

Hospitals

Hospitals may use many different flammable and toxic substances, particularly in their laboratories. Many hospitals have on-site utility supplies and back-up power stations.

Typical Applications:

- Laboratories
- Refrigeration plants
- Boiler rooms

Typical Gases:

Flammable: Methane, Hydrogen

Toxic: Carbon Monoxide, Chlorine, Ammonia, Ethylene Oxide and Oxygen deficiency

Wastewater Treatment Plants

Sewage naturally gives off both Methane and Hydrogen Sulfide (H₂S). The human nose can detect H₂S at less than 0.1 ppm due to the "rotten egg" smell.

Typical Applications:

- Digesters
- Plant sumps
- H2S scrubbers
- Pumps

Typical Gases:

Flammable: Methane, Solvent vapors

Toxic: Hydrogen Sulfide, Carbon Dioxide, Chlorine, Sulfur Dioxide, Ozone

Nil and Gas

The large amount of highly flammable Hydrocarbon gases involved with onshore and offshore exploration and production of oil and gas are a serious explosive risk. Transportation, storage, and refining of oil and gas are also high risk. In addition, toxic gases such as Hydrogen Sulfide are often present.

Typical Applications:

- Exploration drilling rigs
- Production platforms
- Onshore oil and gas terminals
- Refineries

Typical Gases:

Flammable: Hydrocarbon gases

Toxic: Hydrogen Sulfide, Carbon Monoxide

Semiconductor Manufacturing

Manufacturing semiconductor materials uses highly toxic substances and flammable gas. Phosphorus, Arsenic, Boron and Gallium are commonly used as doping agents. Hydrogen is used both as a reactant and a reducing atmosphere carrier gas. Etching and cleaning gases include NF₃ and other perfluorocompounds.

Typical Applications:

- Wafer reactor
- Wafer dryers
- Gas cabinets
- Chemical vapor deposition

Flammable: Hydrogen, Isopropyl Alcohol, Methane

Toxic: HCl, AsH3, BCl3, PH3, CO, HF, O3, H2Cl2Si, TEOS, C4F6, C5F8, GeH4,

NH3, NO2, and O2 Deficiency.

Pyrophoric: Silane

(Spontaneous combustible in air without the need to extend ignition.)

Chemical Plants

Chemical plants are some of the largest users of gas detection equipment. The manufacturing processes use both flammable and toxic gases. Some toxic hazards are created as a by-product.

Typical Applications:

- Raw material storage
- Process areas
- Laboratories
- Pump rows
- Compressor stations
- Loading/unloading areas

Typical Gases:

Flammable: General Hydrocarbons

Toxic: Hydrogen Sulfide, Hydrogen Fluoride, and Ammonia

Power Stations

Power stations traditionally use coal as the main fuel. Most are being converted to natural gas in Europe and the US.

Typical Applications:

- Around the boiler pipe work and burners
- In and around turbine packages
- In coal silos and conveyor belts in older coal/oil fired stations

Typical Gases:

Flammable: Natural Gas, Hydrogen

Toxic: Carbon Monoxide, SOx, NOx, and Oxygen Deficiency

Gas Monitoring Applications

- Semiconductor Manufacturing
- Chemical Plants
- Power Stations

Installation and Maintenance

Periodic servicing, maintenance, and calibration are a vital part of ensuring that fixed and portable gas detection equipment operates correctly. Gas detection equipment does not have specific legislation or clear guidelines that specify service frequency. Relevant documents simply state that inspection and maintenance should be carried out frequently by competent, trained personnel and in line with the manufacturers recommendations.

Installation

Detectors should be mounted where the gas is most likely to be present or near potential leak points. Locations requiring the most protection in an industrial plant would be around gas boilers, chillers, compressors, pressurized storage tanks, cylinders, or pipelines. Areas where leaks are most likely to occur are pipe joints, valves, gauges, flanges, T-joints, filling or draining connections, and more.

Considerations to help determine detector location:

- For gases that are lighter than air (e.g. Methane and Ammonia), detectors should be mounted at a high level. The use of a collecting cone is recommended.
- For gases heavier than air (e.g. Butane and Sulfur Dioxide), detectors should be mounted at a low level.
- Select a location where personnel can view the display and can be easily accessed for service and calibration.
- Natural or forced air currents may change the behavior of the target gas. Consider mounting in ventilation ducts if appropriate.
- Detectors and cables should be protected against mechanical damage and damage caused by natural events such as flooding. Use weather protection assembly if mounting the unit outdoors.
- Use a detector sunshade if locating a detector in a hot climate or in direct sun.
- Be sure to consider the process conditions. Butane and Sulfur Dioxide, are normally heavier than air, but if released from a process line that is at an elevated temperature and/or under pressure, the gas may rise rather than fall.
- Detectors should be positioned away from high pressure parts to allow gas clouds to form. Otherwise any leak of gas is likely to pass by in a high speed jet and not be detected.
- The unit should be installed, located, and operated in accordance with all applicable codes. Never mount in corners of the room because of poor air flow.
- The sensor technology selected must not be adversely affected by other substances in the environment, such as cleaning agents, paint fumes, and other contaminants.
- Do not expose the sensor to liquid or dust contamination. Use spray deflectors when installing outdoors, or in wash-down areas.
- Ensure the detector is mounted on structures that are sturdy and not susceptible to vibration and shock.
- If using a sample draw detector, make sure to properly exhaust the unit to a safe area or outside atmosphere.

Maintenance

Properly commissioning a system ensures that it is fully functioning as designed and accurately detecting gas hazards. It is recommended that employees who use personal gas detection equipment, or work in areas that have fixed systems installed, are formally trained on the use and routine maintenance of the equipment. Service training departments should be able to offer certified training courses designed to suit all levels of ability from basic gas detection principles to advanced custom designed technical courses.

Calibration frequency and servicing are dependent on the specific application. It is important to establish a suitable service period for the equipment.

KCOC Series

KCOP Series

TP1-M

BA/420CO Series

KCO Series

CO DETE	CTOR SEL	ECTION	CHART		
	KCOC Series	Model TP1-M	KCOP Series	KCO Series	BA/420C0 Series
Power	20-28 VAC/ 12-30 VDC	10-28 VDC	23-30 VAC/VDC	24 VAC/VDC	14-27 VDC
Range	0-200 ppm	0-500 ppm	0-200 ppm	0-200 ppm	0-100 ppm 0-300 ppm
Accuracy	±2% full scale	5% of range	±2.5% full scale	±5%	±5 ppm
Output	0-10V or 4-20 mA	4-20 mA	4-20 mA or SPDT relay	4-20 mA or SPDT relay	4-20 mA
Relay Output	Optional	NA	Two SPDT	Two SPDT	NA
Alarm Setpoint	20 ppm	25 ppm and 200 ppm	10/20 ppm, 25/50 ppm, 50/100 ppm	50/100 ppm	NA
Visual Indication	LED alarm status	LED power status	LED power, alarm and sensor status	LED power, alarm status	NA
Display	Optional	NA	NA	NA	Optional
Audible Alarm	Optional	NA	NA	NA	NA
Operating Temperature	32° to 122° F	-4° to 104° F	14° to 140° F	-4° to 185° F	14° to 104° F
Operating Humidity	0-99% RH	15-90% RH	5-99% RH	5-95% RH	15-90% RH
Enclosure	ABS, UL94V-0	Stainless steel screen	Metal	Metal	ABS Polymer
Mounting	Wall or Duct	Wall, single- gang box	Wall	Wall	Wall
Dimensions	4.6"H x 2.9"W x 1.0"D	4.6"H x 2.8"W x 3.0"D	5.4"H x 4.9"W x 3.1"D (hinge cover)	6.3"H x 6.1"W x 3.0"D (hinge cover)	3.8" Diameter x 2.1"D
Weight	Wall: 4 oz Duct: 8 oz	1.3 oz	Hinge: 3.5 lb Screw: 4.0 lb	3.0 lb	0.25 lb
Approvals	NA	CSA	NA	NA	NA
Warranty	18 months	1 year	18 months	18 months	2 years

Carbon Monoxide

Carbon Monoxide (CO) is an odorless, invisible toxic gas that is slightly lighter than air. CO is a common by-product of incomplete combustion. It is produced when fossil fuel appliances burn (furnace, boiler, coal fire, wood burning stove, range oven, water heater or space heater) without sufficient air. Internal combustion engines in vehicles produce CO as a result of incomplete combustion. This can result in harmful concentrations in enclosed areas such as parking structures, loading docks, fire and police stations, warehouses, transportation terminals, and automotive maintenance shops.

Carbon Monoxide is a toxic gas that can cause permanent neurological damage and can be fatal. The OSHA long-term exposure limit (8-hour TWA reference period) for CO is 50 ppm.

The LEED Indoor Environmental Quality Credit 3.2 limits the maximim indoor CO concentration of 9 ppm. In addition, the indoor concentration cannot be more than 2 ppm over outdoor concentrations. A summary of the Primary Standards is included in ASHRAE 62-2001.

Carbon Monoxide detectors should be mounted 3 to 5 feet above the floor.

Carbon Dioxide

CO₂ is measured in **parts per million** (ppm)

Typical outdoor ambient CO_2 concentrations:

350 - 450 ppm

Acceptable IAQ CO₂ concentrations: **600 - 800 ppm**

Tolerable IAQ CO₂ concentrations: **1000 ppm**

Interpretation of ASHRAE (www.ashrae.org) Standard 62.1 "Ventilation for Acceptable Indoor Air Quality" implies CO2 levels should not exceed 700 ppm above outdoor ambient levels of 400 ppm.

Source: Vaisala Application Note, Nov. 2009

Carbon Dioxide is colorless and at low concentrations, the gas is odorless. At higher concentrations it has a sharp, acidic odor. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat.

KCOC Series

CO2 DETECTOR SELECTION CHART					
	KCO2 Series	KCD Series	Model T5007		
Power	20-28 VAC/12-30 VDC	20-28 VAC/12-30 VDC	18-30 VAC/18-42 VDC		
Range	0-2000 ррт	0-2000 ppm	0-2000 ppm		
Accuracy	±3% of reading or ±40 ppm	±3% of reading or ±40 ppm	±75 ppm		
Output	0-10V or 4-20 mA	0-10V or 4-20 mA	0-10V		
Relay Output	Optional	NA	NA		
Alarm Setpoint	1000 ppm	1000 ppm	Factory set at 1000 ppm and 1500 ppm		
Visual Indication	LED alarm status	LED alarm status	LED alarm status		
Display	Optional	NA	NA		
Audible Alarm	Optional	NA	NA		
Operating Temperature	32° to 122° F	32° to 122° F	-4° to 158° F		
Operating Humidity	0-99% RH	0-95% RH	0-95% RH		
Enclosure	ABS, UL94V-0	ABS, UL94V-0	Plastic		
Mounting	Wall or Duct	Wall or Duct	Wall		
Dimensions	4.6″H x 2.9″W x 1.0″D	4.6″H x 2.9″W x 1.0″D	7.5″L x 4.3″W x 2.1″D		
Weight	Wall: 4 oz Duct: 8 oz	Wall: 4 oz Duct: 8 oz	8 oz		
Approvals	NA	NA	CE, RoHS		
Warranty	18 months	18 months	18 months		

•

Model T5007

CO2 DETECTOR SELECTION CHART					
	Model 5001/8041	Model CD-A	C7232 Series	GM Series	
Power	18-30 VAC/18-42 VDC	20-30 VAC/18-30 VDC	24 VAC	24 VAC/VDC	
Range	0-2000 ppm	0-2000 ppm	0-2000 ррт	0-2000 ppm	
Accuracy	5001: ±100 ppm 8041: ±40 ppm	±5% of reading or ±75 ppm	±5% of reading or ±50 ppm	±2% of reading or ±30 ppm	
Output	0-10V	0-10V and SPDT relay	0-10V, 2-10V, 0-20 mA, or 4-20 mA and SPDT relay	0-10V, 0-20 mA, or 4-20 mA	
Relay Output	NA	SPDT, 2A resistive @ 24 VAC	SPDT, 1A resistive	Optional	
Alarm Setpoint	NA	1000 ppm Field adustable 700-1300 ppm	800 ppm	1000 ppm	
Visual Indication	NA	NA	NA	NA	
Display	NA	Optional	Optional	Optional	
Audible Alarm	NA	NA	NA	NA	
Operating Temperature	32° to 122° F	32° to 122° F	-4° to 158° F	23° to 113° F	
Operating Humidity	0-95% RH	0-90% RH	0-95% RH	0-85% RH	
Enclosure	Plastic, UL94V-0	Plastic	Plastic	Plastic	
Mounting	Wall or Duct	Wall or Duct (pilot tube)	Wall or Duct	Wall or Duct	
Dimensions	5001: 4.8"H x 3.3"W x 1.0"D 8041: 3.0"H x 3.0"W x 1.6"D	5.25″H x 3.50″W x 1.38″D	5.1"H x 3.2"W x 1.8"D	4.7″H x 4.7″W x 1.3″D	
Weight	Wall (5001): 4 oz Duct (8041): 8 oz	12 oz	1.6 lb	Model Dependent	
Approvals	CE, RoHS	NA	CE, UL	CE	
Warranty	2 years	18 months	1 year	2 years	

GMW21/GMD20 Series

Carbon Dioxide

Carbon Dioxide acts as an asphyxiant and an irritant. Amounts above 5,000 ppm are considered very unhealthy, and those above about 50,000 ppm (equal to 5% by volume) are considered dangerous.

Good demand-based ventilation indoor air quality can be achieved by monitoring the levels of CO₂. Humans expel CO₂ when they exhale. In rooms, offices, or other areas where a large group of people congregate, the CO₂ levels will increase. The correlation between occupancy and CO₂ levels make CO₂ measurement the most economical method to monitor both air quality and human presence with one sensor.

An elevated level of CO₂ is an indication of inadequate ventilation. High levels of CO₂ indoors can cause occupants to become drowsy and perform at lower productivity levels. Controlling indoor ventilation systems by monitoring CO₂ levels will increase productivity and save energy by minimizing the use of unconditioned outside air.

Indoor Air Quality

Human beings spend approximately 90% of their time indoors. Studies indicate that Indoor Air Quality (IAQ) is directly linked to human wellbeing and productivity.

A high CO₂ level is a sign of poor ventilation and often an indication of other unpleasant odors in the air. As many as 30% of buildings have poor IAQ. The most economical way to determine the ventilation demand is to measure Carbon Dioxide, which increases in relation to number of humans present.

By controlling demandbased ventilation according to the CO₂ level rather than the assumed amount of people occupying the space, the indoor air can be kept fresh without over-ventilating and wasting energy.

T8100 Series

KTS Series

	T8100 Series	KTS Series	IAQPOINT Series
Power	18-30 VAC	20-28 VAC/12-30 VDC	20-30 VAC/18-30 VD
Range	CO2: 400-2000 ppm Humidity: 0-99% Temperature: 32° to 122°F	CO: 0-200 ppm CO2: 0-2000 ppm Humidity: 0-100% VOC: 0-1000 ppm ethanol	CO2: 0-2000 ppm or 0-10,000 ppm Humidity: 0-99% Temperature: -4° to 122°F
Accuracy	CO2: ±3% of reading or ±40 ppm between 0-1000 ppm Humidity: ±2% RH, 10-90% Temperature: ±1.8°F, 59° to 95°F	CO: ±2.5% full scale CO2: ±3% or ±40 ppm Humidity: ±5% RH, 20-80% VOC: ±10% ethanol	CO2: ±3% between 0-2000 ppm Humidity: ±3% RH, 0-99% Temperature: ±0.9°F @ 77°F
Output	0-5V, 0-10V or 4-20 mA	0-10V or 4-20 mA	BACnet, LON, or Modbus Communication
Relay Output	NA	SPDT, 2A resistive	NA
Communication	NA	NA	BACnet, LON, or Modbus
Alarm Setpoint	NA	CO: 20 ppm CO2: 1000 ppm	Programmable
Visual NA Indication		LED alarm status	LED calibration status
Display Optional		Optional	Two-line LCD
Operating 32° to 122°F Temperature		32° to 122°F	32° to 100°F
Operating Humidity	0-95% RH	0-99% RH	0-95% RH
Enclosure	Plastic, UL94V-5VA	ABS, UL94V-0	ABS plastic
Mounting	Wall	Wall or Duct	Wall or Duct
Dimensions	4.6″H x 3.2″W x 1.1″D	4.3″H x 2.9″W x 1.0″D	4.6"L x3.2"W x 1.3"D
Weight	Wall: 0.44 lb	Wall: 4 oz Duct: 8 oz	Wall: 0.44 lb Duct: 0.66 lb
Approvals	CE, RoHS	NA	CE, CSA
Warranty	1 year	18 months	1 year

BA / BS3 Series

	IAQPT Series	BA/BS3 Series	
Power	20-30 VAC/18-30 VDC	9-24 VDC	
Range	CO2: 0-2000 ppm or 0-10,000 ppm Humidity: 0-99% Temperature: -4° to 122°F	0-100% contaminant level of ove 30 different contaminants	
Accuracy	CO2: ±3% between 0-2000 ppm Humidity: ±3% RH, 0-99% Temperature: ±0.9°F @ 77°F	NA	
Output	4-20 mA selectable for CI2, RH, or temperature	0-5V or 0-10V	
Relay Output	NA	NA	
Communication	NA	NA	
Alarm Setpoint	NA	NA	
Visual Indication	LED calibration status	3 Color status LED (optional)	
Display Optional		4 Digit LCD (optional)	
Operating 32° to 100°F 32° Temperature		32° to 122°F	
Operating 0-95% RH Humidity		0-95% RH	
Enclosure	ABS plastic	Plastic	
Mounting	Wall or Duct	Wall	
Dimensions			
Weight Wall: 0.44 lb Duct: 0.66 lb		0.45 lb	
Approvals	CE, CSA	RoHS	
Warranty	1 year	2 years	

Indoor Air Quality

In addition to monitoring CO_2 , indoor air quality sensors also measure the temperature and humidity which contributes to the comfort of the occupant.

NIOSH considers that indoor air concentrations of Carbon Dioxide that exceed 1,000 ppm are a marker suggesting inadequate ventilation.

ASHRAE recommends that Carbon Dioxide levels not exceed 700 ppm above outdoor ambient levels.

OSHA limits Carbon Dioxide concentration in the workplace to 5,000 ppm for prolonged periods, and 35,000 ppm for 15 minutes.

Toxic and Combustible

A combustible gas is any gas that will burn. Mixtures of combustible gases combined with air, when ignited, produce an explosion. As a result, using a combustible gas sensor to ensure that the percentage of gas in the air can never get high enough for the mixture to burn is essential for facility safety.

When gas is detected by the sensor, it is critical to replace the gas/air mixture with fresh air. If this happens, it is important to shut down all equipment and evacuate all personnel from the area to ensure safety. Gas sensors or gas detectors can check for Methane (natural gas), Propane, Butane. Ethane. Pentane. Hexane, Heptane, Acetylene, LNG, LPG, Hydrogen and other combustible gases. The combination of these sensors with demandbased ventilation systems is imperative for quaranteeing facility and occupant safety.

TOXIC & CO	MBUSTIBLE	DETECTOR S	ELECTION C	HART
	Model OS-1	PCA Series	GDS Series	GDD Series
Power	24 VAC/VDC	100-240 VAC or four AA batteries	17-27 VAC/ 24-38 VDC	17-27 VAC/ 24-38 VDC
Туре	Oxygen Sensor	Hand-Held Combustion Analyzer	Toxic and Combustible Detector	Toxic and Combustible De- tector with Remote Sensor
Range	02: 0-25%	O2: 0-20.9% CO: 0-4000 ppm NO: 0-3000 ppm NO2: 0-500 ppm SO2: 0-5000 ppm Temperature 32° to 255°F	O2: 0-25% CO: 0-250 ppm NO2: 0-10 ppm H2S: 0-50 ppm CH4, C3H8, H2: 0-100% LEL	02: 0-25% CO: 0-250 ppm NO2: 0-10 ppm H2S: 0-50 ppm CH4, C3H8, H2: 0-100% LEL
Accuracy	±1% of reading	02: ±0.3% on flue gas CO: CO, SO2: ±5% of reading NO, NO2: ±5% of read- ing or ±5 ppm 32° to 212°F	±3% full scale @ 25°C	±3% full scale @ 25°C
Output	4-20 mA, 0-5 VDC, 0-10 VDC Relay	NA	4-20 mA and dual relay	4-20 mA and dual relay
Relay Output	SPDT 24 VAC/VDC @ 0.5A	NA	DPDT, 5A resistive	DPDT, 5A resistive
Communication	NA	NA	NA	NA
Alarm Setpoint	19.5%	NA	Programmable	Programmable
Visual Indication	NA	NA	LED power, alarm/ fault status	LED power, alarm/ fault status
Display	NA	Alpha-numeric LCD	Alpha-numeric LCD	Alpha-numeric LCD
Operating Temperature	40° to 104°F	Ambient Air: -4° to 999°F Stack Temperature: -4° to 2192°F	-4° to 122°F	-4° to 122°F
Operating Humidity	10-95% RH	0-95% RH	0-95% RH	0-95% RH
Enclosure	Plastic, UL94V-5VA	Plastic	Polycarbonate	Polycarbonate
Mounting	Wall	Hand-Held	Wall or Duct	Wall
Dimensions	5.1″H x 5.1″W x 33.0″D	9.0″H x 3.0″W x 2.5″D	8.1"H x 5.9"W x 2.7"D	8.1″H x 5.9″W x 2.7″D
Weight	1 lb	1.4 lb	0.86 lb	Base: 0.86 lb Remote Sensor: 1.4 oz
Approvals	NA	CE	UL, CSA	UL, CSA
Warranty	1 year	18 months	1 year	1 year

VASQN8X Series

TOXIC & COMBUSTIBLE DETECTOR SELECTION CHART				
	GDN Series	Model VA301EM	VASQN8X Series	Model VA301C
Power	17-27 VAC/ 24-38 VDC	20-27 VAC/29-38 VDC	24 VAC	17-27 VAC/ 24-38 VDC
Type	Network Compatible	Four Zone Toxic and	Dual Zone Sample	Gas Detection

	ODIA Series	Model VASOILM	VASQUOX Series	Model VAJOIC	
Power	17-27 VAC/ 24-38 VDC	20-27 VAC/29-38 VDC	24 VAC	17-27 VAC/ 24-38 VDC	
Туре	Network Compatible Toxic and Combus- tible Detector	Four Zone Toxic and Combustible Detector with Remote Sensors	Dual Zone Sample Draw Gas Detector	Gas Detection Controller	
Range	O2: 0-25% CO: 0-250 ppm NO2: 0-10 ppm H2S: 0-50 ppm CH4, C3H8, H2: 0-100% LEL	02: 0-25% CO: 0-250 ppm NO2: 0-10 ppm H2S: 0-50 ppm SO2: 0-10 ppm CL2: 0-15 ppm Combustibles: 0-100% LEL	02: 0-25% CO: 0-250 ppm NO2: 0-10 ppm CO2: 0-2000 ppm Combustibles: 0-100% LEL	Monitors up to 96 inputs/outputs. Works in tandem with other remote sensors	
Accuracy	±3% full scale @ 25°C	±3% full scale @ 25°C	±3% full scale @ 25°C	Input dependent	
Output	BACnet or Modbus Communication	Four 4-20 mA, Modbus Communication and four relays	Four relays	Four relays	
Relay Output	DPDT, 5A resistive	DPDT, 5A resistive	DPDT, 5A resistive	DPDT, 5A resistive	
Communica- tion	BACnet or Modbus	Modbus	NA	Three 32 Modbus zones	
Alarm Setpoint	Programmable	Programmable	Programmable	Programmable	
Visual Indication	LED power, alarm/ fault status	LED power, alarm/ fault status	LED power, alarm/ fault status	LED power, alarm/ fault status	
Display	Alpha-numeric LCD	Alpha-numeric LCD	Alpha-numeric LCD Alpha-numeric LC		
Operating Temperature	-4° to 122°F	32° to 100°F	32° to 104°F	-4° to 122°F	
Operating Humidity	0-95% RH	0-95% RH	0-95% RH 0-95% RH		
Enclosure	Polycarbonate	Polycarbonate, NEMA 4X	Polycarbonate, NEMA AX Polycarbonate, NEMA 4X		
Mounting	Wall or Duct	Wall	Wall	Wall	
Dimensions	8.1″H x 5.9″W x 2.7″D	8.0"H x 11.0"W x 2.8"D	19.0"H x 11.8"W		
Weight	0.86 lb	2.3 lb	26.5 lb	3.5 lb	
Approvals	UL, CSA	NA	NA	NA	
Warranty	1 year	1 year	1 year	1 year	

Toxic and Combustible

A toxic gas is any gas that, when inhaled, will produce some adverse effect on the person breathing. Toxic gases in large concentrations can produce unconsciousness or death by displacing the oxygen in breathable air. Many toxic gases, even in very low concentrations, over a long time period can cause cancer or permanently damage the lungs. Toxic gas sensors ensure that no personnel are injured or killed by toxic leak accidents.

Many times toxic gas detectors are found in parking garages, loading docks, boiler rooms, factories, and many more places where toxic gases are present. Use these types of sensors to check for H₂S, SO₂, CO, CO₂, CL_2 , NO_2 , and other toxic gases.

Refrigerant Monitors

Refrigerant gases are those used in climate control in commercial and business facilities such as warehouses, stores, and office buildings. The refrigerants used in commercial heating, ventilating and air conditioning (HVAC) or regular air conditioning (AC) units include hydrofluorocarbons (HCFCs), chlorofluorocarbon (CFCs) and perfluorocarbon (PFCs).

As refrigerant costs continue to rise and government regulations become increasingly restrictive, employing an effective refrigerant leak detection system is more important than ever. The following are important steps to follow for the installation of a refrigerant monitor.

Make sure you:

- Locate the monitor and/or sample point as close as possible to potential leak points
- Select a location where personnel will see the readout panel so it can easily be accessed for service and calibration
- Check wiring codes: they should be installed in accordance with all applicable codes
- Properly exhaust the instrument to a safe area or to outside atmosphere
- If ventilation exists in a chiller room, smoke tubes can help determine the most appropriate gas monitoring location

Model HGM-SZ

del	RL	D-5	Model	AGM-S

	Model RLD-5	Model RLD-134A	Model HGM-SZ	Model AGM-SZ
Power	24 VAC/VDC ±10%	24 VAC/VDC	100 to 240 VAC, 50/60 Hz	100 to 240 VAC, 50/60 Hz
Туре	Refrigerant Leak Detector	Refrigerant Leak Detector	Single Zone Monitor	Single Zone Ammonia Monitor
Range	R-11, R-12, R-22, R-113, R-502: 0-1000 ppm	R-134a: 0-1000 ppm	R-11, R-12, R-22, R-113, R-114, R-123, R-124, R-125, R-134a, R-227, R- 236FA, R-401a, R-402a, R-402b, R404a, R-407a, R-407c, R-408a, R-409a, R-410a, R-500, R-502, R-503, R-507, R-508b, H-1211, H-1301. H-2404, N-1230: 0-1000 ppm	R-717: 25-10,000 ppm
Accuracy	±5%	±5%	±1 ppm ±10% reading	±10 ppm from 25 to 100 ppm or ±10% reading from 100 to 10,000 ppm
Output	4-20 mA, 0-5 VDC, 0-10 VDC, 1-6 VDC Relay	4-20 mA, 0-5 VDC, 0-10 VDC, 1-6 VDC Relay	Three alarm relays, One fault relay, 240 VAC, 5A, and 4-20 mA	Three alarm relays, One fault relay, 240 VAC, 5A, and 4-20 mA
Relay Output	SPDT 24 VAC/VDC @ 0.5A	SPDT 24 VAC/VDC @ 0.5A	SPDT 24 VAC/VDC @ 0.5A	SPDT 24 VAC/VDC @ 0.5A
Communication	NA	NA	NA	NA
Alarm Setpoint	500 ppm: 0-1000 ppm	500 ppm: 0-1000 ppm	Dependant on Gas	Dependant on Gas
Visual Indication	Warm-up, ready, warning, alarm LEDs	Warm-up, ready, warning, alarm LEDs	LED alarm/fault status	LED power, alarm/ fault status
Display	NA	NA	NA	LED
Operating Temperature	32° to 158°F	32° to 158°F	32° to 122°F	32° to 122°F
Operating Humidity	10-95% RH	10-95% RH	5-90% RH	5-90% RH
Enclosure	Plastic	Plastic	Metal	Metal
Mounting	Wall	Wall	Wall	Wall
Dimensions	8″H x 4.5″W x 2″D	8"H x 4.5"W x 2"D	7.7″H x 3.6″D x 13.7″L	Base: 7.4"H x 15"L x 3.3"D
Weight	1.45 lb	1.45 lb	7 lb	7 lb
Approvals	NA	NA	UL (61010-1), CSA, CE	UL (61010A-1), CSA,
				CE

Model VA301EM

IR-F9 Series

Model HGM-MZ

	ANT GAS MONITOR SELECTION CHART				
	IR-F9 Series	Model VA301EM	VASQN8X Series	Model HGM-MZ	
Power	24 VDC	20-27 VAC/29-38 VDC	120 VAC, 2A	100 to 240 VAC, 50/60 Hz, 21W	
Туре	Stand-Alone Infrared Detector	Detector	Multi-point Sample Draw Monitor	Multi-zone Monitor	
Range	R-22, R-134A, R-404A, R-407A, R-410A, R-422D, R507A: 0-1000 ppm	R-11, R-12, R-22, R-123, R-125, R-134a, R401a: 0-1000 ppm	R-11, R-12, R-22, R-123, R-125, R-134A	R-11, R-12, R-21, R-22, R-23 R-113, R-114, R-123, R-124 R-125, R-134a, R-227, R-236FA, R-245FA, R-401a R-402a, R-402b, R404a, R-407a, R-407c, R-408a, R-409a, R-410a, R-422a, R-422d, R-500, R-502, R-503, R-507, R-508b, H-1211, H-1301, H-2402, N-1230, FA188, FC72, HFI	
Accuracy	±25 ppm @ 25°C ±3% of full scale	±10 ppm @ 50 ppm; ±40 ppm @ 500 ppm	±3%	±1 ppm ±10% reading	
Output	4-20 mA	Four DPDT relays, Three 24 VDC @ 250 mA, Four 4-20 mA, 1000Ω @ 24 VDC, RS-485 Modbus	Three DPDT relays, Three alarms	Three SPDT relays, One fault relay, 250 VAC, 3A, Dual 4-20 mA	
Relay Output	Optional	DPDT	DPDT	SPDT, 3A resistive	
Communication	Modbus, Optional	Modbus	NA	RS-232C port, RS-485 serial interface, Modbus	
Alarm Setpoint	Dependant on Gas	Dependant on Gas	Dependant on Gas	Dependant on Gas	
Visual Indication	LED power	G - Normal, R -Alarm, ABC, Y - Fault, A - Tx	LED, Green: Normal, Red: Alarm, Yellow: failure location	NA	
Display	NA	LCD	NA	NA	
Operating Temperature	-40° to 140°F	32° to 100°F	32° to 122°F	32° to 122°F	
Operating Humidity	0-100% RH	0-95% RH	0-95% RH	5-90% RH	
Enclosure	ABS Polycarbonate Reinforced fiberglass, polyster, NEMA 4	ABS Polycarbonate, NEMA 4X	Plastic	Metal	
Mounting	Wall	Wall	Wall	Wall	
Dimensions	9.59″H x 7.71″W x 4.52″D	7.99″H x 11.2″W x 2.76″D	19″H x 11.75″W x 4.5″D	12.2″L x 13.7″H x 5.0″D	
Weight	4.4 lb	2.25 lb	26.5 lb	15 lb	
Approvals	NA	NA	NA	UL (61010-1), CSA, CE	
Warranty	1 year	1 year	1 year	2 years	

Refrigerant Monitors

Avoid:

- Mounting the unit to a structure subject to vibrations and shock, such as piping and piping supports
- Locating the units near an excessive heat source or in wet or damp locations
- Mounting the unit to where it will be exposed to direct sun light
- Installing the monitor in areas where condensation may form which may clog or block the sampling line, preventing it from receiving fresh gas samples

Ammonia (NH₃) is one of the most highly produced chemicals in the world and is used in many industrial refrigeration systems. It is considered to be environmentally friendly because it does not deplete the ozone layer or contribute to global warming as other refrigerants do. However, Ammonia is toxic to humans at low concentrations and must be monitored in case of an accidental release.

Natural Ammonia levels in the atmosphere are in the low ppb range. Ammonia is a severe irritant to the human respiratory tract and short-term exposure over 15 minutes needs to be limited to 25-35 ppm. Concentration levels at or above 300 ppm are considered immediate danger to life and health.

Accessories

- Calibration Kits
- Verficiation Kits
- Gas Cylinders

ACCESSORIES	
PRODUCT	DESCRIPTION
3015-3430	R-22 Gas verification kit
3015-3437	R-134a Gas verification kit
3015-3438	R-123 Gas verification kit
UCK-1	Universal calibration kit for non-corrosive gases $(N_2, CO_2, CH_4, H_2, O_2, CO, and refrigerants)$
UCK-2	Universal calibration kit for corrosive gases $(NO_2, H_2S, SO_2, and NH_3)$
UCK-3	Universal calibration kit for non-corrosive or corrosive gases
1309K0002	GDS, GDN, GDD calibration kit (58-1036)
1309K0004	GDS, GDN, GDD calibration kit (17-346)
GAS-N2	Nitrogen (N ₂), 17L
GAS-C02-2000	2000 ppm Carbon Dioxide (CO ₂) in Nitrogen (N ₂), 17L
GAS-C02-1000	1000 ppm Carbon Dioxide (CO ₂) in Nitrogen (N ₂), 17L
GAS-C02-800	800 ppm Carbon Dioxide (CO ₂) in Nitrogen (N ₂), 17L
GAS-CO-200	200 ppm Carbon Monoxide (CO) in air, 17L
GAS-CO-100	100 ppm Carbon Monoxide (CO) in air, 17L
GAS-CO-50	50 ppm Carbon Monoxide (CO) in air, 17L
GAS-CO-25	25 ppm Carbon Monoxide (CO) in air, 17L
GAS-N02-5	5 ppm Nitrogen Dioxide (NO_2) in air, 58L
GAS-CH4-2.5	2.5% Methane (CH_4) in air, 17L
GAS-H2-2	2.0% Hydrogen (H_2) in air, 17L
GAS-H2S-25	25 ppm Hydrogen Sulfide (H ₂ S) in air, 58L
GAS-S02-5	5 ppm Sulfur Dioxide (SO ₂) in air, 58L
GAS-02-18	18% Oxygen (O ₂) in Nitrogen (N ₂). 17L
GAS-NH3-50	50 ppm Ammonia (NH ₃) in Nitrogen (N ₂), 58L
GAS-R123-100	100 ppm R-123 in air, 17L
GAS-R11-500	500 ppm R-11 in air, 17L
GAS-R12-500	500 ppm R-12 in air, 17L
GAS-R134A-500	500 ppm R-134a in air, 17L
GAS-R22-500	500 ppm R-22 in air, 17L

Gas Calibration Kit

GAS APPLICATION CHART				
GAS	FORMULA	APPLICATIONS	ORIGIN OF HAZARD	LOCATION
Hydrogen Sulfide Toxic	H ₂ S	Manholes, pumping stations, filtration, wastewater treatment & power plants, agriculture, chemical, construction, electric & gas utilities, fire service, food & beverage processing, hazmat, iron, steel, oil & gas production, marine shipyard, mining, petrochemical, paper & pulp. pharmaceutical/research labs & public works	Leak from process equipment	1 foot above floor
Carbon Monoxide Toxic	CO	Parking garage, ambulance bay, fire & police stations, loading docks, vehicle tunnels, automatic maintenance garages, emergency generator, transport terminal-baggage, commercial kitchen, golf cart maintenance, battery charging area, car wash, indoor stadium/ arena, warehouse, agriculture, chemical, construction, electrical & gas utilities, manufacturing, food & beverage processing, boiler room, hospital, hazmat, iron, steel, gas & oil production, marine shipyard, mining, petrochemical, paper & pulp, power & wastewater treatment plants, welding	Product of incomplete combustion engines present in exhaust systems in varying degrees	3-5 feet above floor
Nitrogen Dioxide Toxic	NO ₂	Parking garage, ambulance bay, fire & police stations, loading docks, vehicle tunnels, automatic maintenance garages, transport terminal-baggage, emergency generator, agriculture, chemical, construction, iron & steel production, mining, public works, welding, golf cart maintenance, battery charging area, hospital, car wash, warehouse	By-product of diesel fuel engine combustion present in exhaust systems	1 foot below ceiling
Chlorine Toxic	CL ₂	Swimming pools, wastewater treatment plants, hospital, chemical, paper & pulp, pharmaceutical/research labs	Leaks from Chlorine containers and Chlorinators	1 foot above floor
Hydrogen Combustible	H ₂	Battery charging area, golf cart maintenance, phone company-battery backup, chemical, hazmat, power plants, maintenance garage, fire & police stations, hydrogen tanks	Leak from batteries or furnaces	1 foot below ceiling
Methane Combustible	CH₄	Boiler room, wastewater treatment plants, commercial kitchen, golf cart maintenance, battery charging area, indoor stadium/arena, semiconductor manufacturing, hospital, parking garage, agriculture, aviation, chemical, construction, electrical & gas utilities, fire service, food & beverage processing. hazmat, iron & steel production, manufacturing, marine shipyard, mining, oil & gas production, petrochemical, paper & pulp, pharmaceutical/research labs, power plants, public works, welding	Leaks from sludge digesters and dryers	1 foot below ceiling
Propane Combustible	C ₃ H ₈	Golf cart maintenance, forklifts, commercial & residential heating, transport terminal-baggage, hospital, loading docks, commercial kitchen, car wash, parking garage, agriculture, aviation, chemical, construction, indoor stadium/arena, warehouse, electric & gas utilities, fire service, food & beverage processing, hazmat, manufacturing, marine shipyard, mining, oil, gas, steel & iron production, petrochemical, paper & pulp, pharmaceutical/research labs, power plants, public works, wastewater treatment plants, welding	Gas storage area	1 foot above floor
Oxygen Combustible	02	Blood bank, pumping stations, refrigeration & air conditioning systems, biological specimen storage, cryogenic containers, oxygen depletion-MRI room, agriculture, aviation, chemical, construction, electric & gas utilities, fire service, food & beverage processing, hazmat, iron, steel, oil & gas production, marine shipyard, mining, petrochemical, paper & pulp, pharmaceutical/research labs, power plants, public works, wastewater treatment plants, welding, fire & police stations, golf cart maintenance, battery charging area, maintenance garage	Dispersion of oxygen in the air by nitrogen leaking from liquid open flask dewars or pressurized cryogenic liquid containers	3-5 feet above floor
Carbon Dioxide Indoor Air Quality	CO ₂	Schools, meeting rooms, agriculture, aviation, fire service, food & beverage processing, marine shipyard, mining, wastewater treatment plants	People exhale CO ₂	3-5 feet above floor
Refrigerants: R-11, 12, 12B1, 22, 123a, 125, 134A, 222, 245, 404A, 407C, 410A, 507A, 508B		Compressor and machine rooms, refrigeration systems	Leaks from chillers	1 foot above floor
Ammonia: R717 Toxic & Combustible	NH ₃	Refrigerated warehouse, indoor stadium/arena, breweries, agriculture, food & beverage processing, hazmat, oil & gas production, petrochemical, pharmaceutical/research labs, wastewater treatment plants, chemical, hospital	Leak from mechanical freezers spill or leak during ammonia transferring process	1 foot below ceiling
Chlorine Dioxide Toxic	CIO ₂	Paper & pulp, air decontamination, wastewater treatment plants	By-product of paper production	1 foot from floor
Hydrogen Chloride Toxic	HCI	Chemical, food & beverage processing, hazmat, manufacturing, pharmaceutical/research labs, welding, semiconductor manufacturing	Production of hydrochloric acid; reagent industrial chemical use Silicon Purification	1 foot below ceiling
Hydrogen Cyanide Toxic	HCN	Fire service, food & beverage processing, hazmat, iron & steel production, mining	Precursor to sodium cyanide and potassium cyanide used in mining	3-5 feet above floor
Nitric Oxide Toxic	NO	Agriculture, chemical, construction, iron & steel production, mining, public works, semiconductor manufacturing, welding	Used for the synthesis of nitric acid from ammonia	1 foot below ceiling
Ozone Toxic	03	Electric utilities, public works, wastewater treatment plants, hospital, welding, semiconductor manufacturing	Used in preparation of commercially useful organic compounds; used as disinfectant	3-5 feet above floor
Phosphine Toxic	PH ₃	Agriculture, food & beverage processing, hazmat, semiconductor manufacturing	Dopant in semiconductor industry; used as fumigant in agriculture	1 foot below ceiling
Sulfur Dioxide Toxic	SO ₂	Chemical, electric utilities, hazmat, iron & steel production, paper & pulp, pharmaceutical/research labs, power plants, public works, wastewater treatment plants, welding	Used as a refrigerant and reducing agent	1 foot from floor
Volatile Organic Compounds (VOCs) Toxic & Combustible		Chemical, construction, aviation, food & beverage processing, hazmat, iron & steel production, manufacturing, petrochemical, oil & gas production, paper & pulp, pharmaceutical/research labs, wastewater treatment plants	Organic chemicals having significant vapor pressures and can affect environment and human health; building materials such as paint, adhesives, wall boards, and ceiling tiles emit formaldehyde-one common VOC	3-5 feet above floor

Headquarters
3300 Brother Boulevard
Memphis, TN 38133
info@kele.com
USA: 888-397-5353
FAX: 800-284-5353
International Only: 001-901-382-6084
International FAX: 901-388-1697
E-mail: international@kele.com
www.kele.com

Write a review. Get a reward. Get the details at http://www.kele.com/ratingsandreviews/

THE LEADING SUPPLIER OF

Gas Detection Equipment

To request a catalog, go to **kele.com/catalog-request** or call **888-397-5353**.

Kele Calculator

Log on to kele.com/iPhone to launch iTunes and download your free Kele Calculator. For the NEW iPad app go to www.kele.com/ipad_kele_calculator.aspx.

The Transducer Selection Chart

Can quickly guide you to the ideal transducer for your application.

The Kele Valve Wizard

Is a convenience tool designed to assist in selecting products from the current Kele valve and actuator portfolio.

Online AutoCAD Drawings

Are available for downloading to streamline your product specification stage.

Find all this and more online

Scan the QR code at right with a web cam or mobile phone camera equipped with a barcode app to go directly to our website!

